Perfluoro-allenyl and -butadienyl Transition Metal Complexes

By M. GREEN, N. MAYNE, and F. G. A. STONE (Department of Inorganic Chemistry, The University, Bristol 8)

A NUMBER of stable perfluoro-alkyl, -aryl, and -alkenyl transition-metal complexes have been prepared.¹ We now describe synthetic routes to perfluoro-allenyl and -butadienyl metal carbonyl complexes.

Treatment of hexafluorobut-2-yne with carbonyl metal anions gives two types of complex, *e.g.*, the anion $[\text{Re}(\text{CO})_5]^-$ affords complexes (I) and (II). The infrared spectrum of the allenic complex (I) showed terminal carbonyl stretching frequencies at

2148m (A_1^{1b}) , 2070w (B_1) , 2042s (E) and 2012s (A_1^{1a}) , *i.e.*, XRe(CO)₅, with an additional band at 1992s cm.⁻¹ (allenic asymmetric stretching vibration). The ¹⁹F n.m.r. spectrum showed a triplet at 62·0 p.p.m.* $(J_{F(1)F(2)} = 4c./\text{sec.})$ and quartet 112·2 p.p.m. $(J_{F(1)F(2)} = 4c./\text{sec.})$ with intensities of 3:2 respectively. The allenic complex (I) represents the first example of an allene σ -bonded to a transition metal.

Molecular weight measurements demonstrated that the yellow crystalline complex (II), m.p. 138-138.5, is a dimer of the allenic complex (I). The The infrared spectrum showed terminal carbonyl stretching frequencies at 2148m (A_1^{1b}) , 2070vw (B_1) , 2050sh (E), 2040s (E) and 2012s (A_1^{18}) and an additional band at 1619m cm.⁻¹ (C=C.Re). The band at 1992 cm.⁻¹ present in (I) was absent in the dimer. The ¹⁹F n.m.r. spectrum contained three bands at 44.2 p.p.m. [complex multiplet, CF₃ (2)] 51.6 p.p.m. [quarter, $J_{FF} = 2c./sec.$, CF_2 (3) and (4)] and 64.0 p.p.m. [complex multiplet, CF_3 (1)] with intensities of 3:4:3, respectively, suggesting that complex (II) has the structure illustrated. It is suggested that the cyclobutane ring present in (II) is puckered so as to relieve steric interaction.

A perfluorobutadienyl metal complex has previously been obtained² by treatment of carbonyl π -cyclopentadienylnickel iodide with vinylmagnesium bromide. Reaction of the anions [Re(CO)₅]⁻ and [π -C₅H₅Fe(CO)₂]⁻ with perfluorobuta-1,3-diene

* Relative to CClF₃ (0.0 p.p.m.) increasing to high field.

- ² D. W. McBride, E. Dudek, and F. G. A. Stone, J. Chem. Soc., 1964, 1752.
- ³ P. W. Jolly, M. I. Bruce, and F. G. A. Stone, J. Chem. Soc., 1965, 5830.
- 4 H. C. Clark and J. H. Tsai, Inorg. Chem., 1966, 5, 1407.

gives the perfluorobutadienyl complexes (III), v_{max} 2144m (A_1^{1b}), 2073m (B_1), 2038s (E), 2012s (A_1^{1a}), 1785sh, 1773s (C=C), 1632m (C=C·Re) cm.⁻¹; $J_{F(1)F(2)} = 136 \cdot 5$ c./sec.; and (IVa), v_{max} 2040s, 1993s (C=O), 1763s (C=C), 1673s (C=C·Fe): $J_{F(1)F(2)} = 41 \cdot 0$ c./sec. It is of particular interest that in the reaction of [Re(CO)₅]⁻ the transperfluorobutadienyl complex is obtained, whereas with [π -C₅H₅Fe(CO)₂]⁻ the cis-complex is obtained.

The other isomers were also isolated in low yield and characterised.

The manganese pentacarbonyl analogue was not formed by reaction of the less reactive³ $[Mn(CO)^{5}]^{-1}$ anion with perfluorobuta-1,3-diene. However, ultraviolet irradiation of a solution of $CF_2 =$ $CF \cdot CF = CF_2$ and $Me_3SnMn(CO_5)$ in pentane led to the formation of Me₃SnF and the cis-manganese pentacarbonyl complex (IV b), $v_{max} 2132m (A_1^{1b})$, 2073m (B_1), 2039s (E), 2010s (A_1^{18}), 1763s (C=C), 1665s (C=CMn); $J_{F(1)F(2)} = 34.0 \text{ c./sec.}$; presumably via insertion of the diene into the metal-metal bond followed by elimination of Me₃SnF. Although the insertion of a simple fluoro-olefin into metal-metal bonds has been reported⁴ this example represents the first example of an insertion of a diene into a metal-metal bond.

(Received, September 19th, 1966; Com. 701)

¹ F. G. A. Stone, Endeavour, 1966, 25, 33.